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Peculiar properties of crystal optics in real modulated phases 
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Lviv State University, Physics Departmenf Lviv-54, Post Box 3154, 290054 Lviv, Ukraine 

Received 17 February 1993. in final form 20 May 1993 

Abslrad. Using Jones calculus, a model is developed for interpretation of the optical 
properties of an inhomogeneous medium with spatially modulaled complex dielectric tensor. 
The parameters characterizing the optical activity, linear birefringence and also the indicatrix 
rotation are derived. Distortions of h e  modulation wave due to defects presenl are shown 
to affect stmngly the optical properties of a crystal. The relevant physical phenomena 
responsible for thal are discussed. It is revealed that the optical activity can originate from 
a s e m i m w p i c  inhomogeneity of lhe smclure and its local impertec6ons. as well as its 
polarization. The conclusions dlawn should be valid irrespective of the modulation shape. The 
temperature evolution of the parameters involved in the model is considered for the me of 
incommensurately modulated material. The results are “pared with the experimental data 
available for IN(CH,)&ZnC4 and other incommensurate crystals. 

1. Introduction 

In recent years much attention has been paid to a controversial problem of the optical 
activity in incommensurate (INC) dielectric materials (Meekes and Janner 1988, Kobayashi 
1991, Ortega et 01 1992). Description of the optical phenomena in a non-absorbing uniform 
dielectric medium is given by a material equation with a complex dielectric tensor, which 
accounts for a first-order spatial dispersion (Agranovich and Ginzburg 1979): 

where the real symmetric tensor 6;: describes a purely birefringent medium, eijk denotes 
the unit pseudotensor antisymmetric in all its indices, gk, the gyration pseudotensor, 
UJ the frequency and q the wavevector of light, and q‘*’ the unit vector along q. 
In a centrosymmetric INC material, within an average structure approximation, guj is 
forbidden by symmetry, and more refined approaches are required for the application of 
(1) to incommensurately modulated sbUctum. Namely, one has to consider properly the 
inhomogeneity of the INC crystal, i.e. the spatial inhomogeneity of E:: and gkj, and how to 
get a semimacroscopic description from a microscopic one. Of particular note is a study by 
Meekes and Janner (1988) in which they have shown, without specifying the quantitative 
details, that the superspace symmetry of the INC phase allows for some microscopic gyration 
components. Stasyuk et ~l (1989) have suggested a visual model describing the INC crystal 
as a sequence of enantiomorphous layers with the opposite signs of gyration parameter. 
However, the model tumed out to be non-gyrotropic as demonstrated by Vlokh et a1 (1991). 
A similar approach used by Dijkstra (1991a) made it possible to reveal that the structure with 
the modulated off-diagonal e:,”’ components manifested an optical activity, in accordance 
with the appropriate symmetry considerations (Dijkstra et a1 1992a). 
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We believe that the theoretical studies available in the literature do not exhaust the 
problem. Regarding the quantitative estimations, the results of Dijkstra (1991a) are mainly 
concentrated on the [N(CHd4]zZnC14 compound. There exist difficulties (Ortega et al 1992) 
in the explanation of the magnitude of the optical activity measured in some experiments. 
This has led Ortega et a/ to the conclusion that the optical activity in the INC compounds 
must be symmetry restricted to a value inaccessible for investigation. All the mentioned 
theories deduce the optical activity from the ideal modulated structuTe. So, Dijkstra et af 
(1992a) suppose that the averaging processes ‘mix’ different Fourier wavevectors of the INC 
modulation and cause a perfectly periodic variation of the dielectric parameters along the 
modulation direction. On the other hand, it would be of interest to consider contributions 
to the optical activity arising from distortions and polarization of a perfect INC structure, 
the more so that the latter does not show gyration in the average structure approximation. 
A well known fact is that the INC phases, owing to pinning, are particularly sensitive to the 
present defects, and this can be observed clearly in the linear birefringence (Jamet 1988, 
Mogeon et a1 1989). We can expect the optical activity to be affected also by the interaction 
of the INC structure with defects (see Kushnir et a1 1993), although the understanding of 
the origin of this is still lacking. It is noteworthy that the experimental results (Vlokh et 
a/ 1985, 1987) on the optical activity along the optical axes in KzZnC14 and RbZnC14, 
being in some contradiction with the HAW’ data. point to the essential role of structural 
unipolarities and perfection of the samples (see also ANtyUnyan et a/ 1982, Sanctuary et 
a1 1985). 

The problem must be looked at in the following way: which are the optical properties 
of the real inhomogeneous modulated materials, particularly the INC and the multidomain 
ferroelectric or ferroelastic ones? The purpose of this paper is just to study these points, 
considering the modulation of both real and imaginary parts of the dielectric tensor. We 
disregard below the symmetry aspects and the structural crystal incommensurability at the 
microscopic level and take those into account only on a phenomenological (physical) level. 
Section 2 is devoted to analysis of a number of typical modulated structures using Jones 
calculus. In section 3 we discuss the physical mechanisms for the influence of structural 
imperfections on the optical properties, consider the behaviour of the developed model 
with temperature, and give a comparison with the experimental results available. Finally, 
conclusions are drawn in section 4. 

2. Jones model for a modulated dielectric medium 

2.1. Perfect structure with modulated gyration component 

Let us consider a crystal medium that has a gyration component modulated along one 
direction. With a view towards analytical simplicity we will restrict analysis to a square 
waveform of the modulation (see Dijkstra 1991a). Then the finite crystal can be treated as an 
optical layered structure (om) that consists of many optical layers (figure I(a)) characterized 
by altemating gyration parameters +G and -G (Stasyuk et al 1989). The model can be 
used for an approximate description of the INC crystal. Another example is a multidomain 
ferroelectric phase, which occurs after the phase transition with a loss of the inversion 
centre. 

Each layer is assumed to be a homogeneous elliptic phase retardation plate (Shurcliff 
1963, with the thickness I equal to half the period of the modulation. Note that I is large 
enough to allow for an interpretation in terms of macroscopic parameters, but much smaller 
than the crystal dimensions. The two enantiomorphous layers form a unit modulation cell. 
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Fwre 1. Typical oms representing schematically dieleetric material with the square waveform 
of modulation. Unshaded and shaded regions have opposile signs of modulation paramem (see 
text). S .  80.61, SZ and AI, A2 denote the phase retardations in Ihe optical layers and constituent 
subsmcIures. respectively. Amows display the light propagation direction. 

The spatial average of such an 01s has inversion symmetry. Here we deal with a perfect 
modulation as the sample contains an integer number N of complete identical unit cells. 

The Jones matrix of the layers for light propagation directions different from the optical 
axes may be written as (Vlokh et ai 1991) 

exp(-i8/2) @k sin(S/2) 
T*=(  f 2 k  sin(6/2) exp(i6/2) 

where 6 denotes the phase retardation in the layer and k the small eigenwave ellipticity. To 
a good approximation 

k = G/(ZiAn) (3) 

with ir the mean refractive index and An the linear birefringence. One can study with Jones 
calculus (see Azzam and Bashara 1981) the optical properties of the om. Its Jones matrix 
is 

TZN = Tr-(W+(OIN. (4) 

An approximation linear in k will usually be used in this paper. This reduces (4) to 

exp( -i A /2) 2ik tan(6/2) sin(A/2) 
T ~ N  = (2iktan(6/2) sin(A/2) exp(iA/Z) (5) 
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where A = 2N6. The observed phase retardation of the OLS is determined from 

A2N ob - - argV,I - argV,Z = 2 tan-’[tan(A/Z)[ 1 + 4kZ tanZ(6/2)]”2] + 2nm 

0 S Kushnir and 0 G Vlokh 

(6) 

where Vel,z are the eigenvalues of T ~ N  and m is an integer. In (6) the term proportional to 
k’ is the only result of inhomogeneity of the OLS imposed by the modulation. Taking small 
6 (see subsection 3.2). this term can be neglected, and we obtain A$ = A. That holds for 
all OMS considered further. 

Next we have to check the eigenwaves of TZN (Vlokh et a1 1991). The eigenwave 
ellipticity K of the entire OLS found by standard methods (Azzam and Bashara 1981) 
becomes zem, unlike that of the constituent layers. This testifies that the gyration is absent, 
being in disagreement with the result derived by Stasyuk et a1 (1989). In terms of the 
description made by Shurcliff (1965), zero optical activity means that the OLS represents a 
transcendental composite phase retardation plate. Another example of such plates is given 
by Dijkstra (1991a), who has found that a certain sequence of purely birefringent optical 
layers can form a gyrotropic structure. 

A unique feature of the model is that the reference coordinate system of the linear 
eigenwaves of the 01s is oriented over the angle 

A&, = -k tan(8/2) (7) 

with respect to that of the layers. The latter coincides with the crystallographic system of 
the high-temperature phase in both ferroelectric and INC crystals. In other words, the O l s  
exhibits a specific optical indicatrix rotation, which is the result of a perfect modulation. It 
is called a quasigymtropic rotation (Vlokh ef al 1991, 1992a) because of the origin from 
the gyrotropy in the optical layers. The optical activity is thus not the only consequence 
of the spatial modulation of the dielectric function, contrary to the usual belief, and can be 
accompanied by additional indicatrix rotation. From this viewpoint the models developed 
here and in the studies by Dijkstra (1991a) are complementary. 

The indicatrix rotation in the ullc crystal with the average symmetry mmm can be 
understood within the mesoscopic approach (Dijkstra et ol 1992a). Namely, it is caused by 
a symmetry breaking owing to the fact that the surface boundaries of the OLS are located 
at equivalent position with symmetry 2/m. Below, we will elucidate this subject more. 

2.2. Optical layered structure with exfended unipolarity 

In this subsection we consider the optical properties of the OLS shown in figure I@). 
It is unipolar because the total volumes of the opposite layers are not equal (61 # 82). 
The unipolar modulation cell reiterates periodically along the modulation direction. Such 
unipolarity we will refer to as ‘regular’ or ‘extended’. The model seems to be realistic for 
polarized multidomain ferroelectric phases, or the discommensuration region in INC crystals 
at temperatures close to the lock-in one. The Jones matrix of the OLS becomes 

TAS = [T-@dT+(OlN 

with A = N(61 + 8 2 )  the approximate total phase retardation. Note that the eigenwave 
ellipticity and the indicatrix rotation in the OLS may be derived easily (see appendix) from 
the appearance of its Jones matrix, simplifying the analysis. Further we will dmp the 
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expressions for Jones matrices of the OLSS, giving only K and AB values. In particular, for 
Jones matrix (8) 

K A ~  = k sin[(& - 62)/21/ sin[(& + 82)/21 

ABA~ = -2ksin(Sl/2) sin(Sz/2)/sin[(& + S2)/21. 

(9) 

(10) 

The ellipticity of only one of the orthogonal eigenmodes is represented in (9). 
To clarify the significance of AB, find the azimuth of the output light that may be 

qualified as a characteristic of the optical response of the ow discussed. One gets (see 
appendix) 

+ 0 cos A.  (11) 

Both K A ~  and ABAa contribute to X A ~ ,  as seen from (11). However, the contributions differ 
from the standpoint of symmetry. If the symmetry operation of time inversion (q + -q) is 
considered (Sirotin and Shaskolskaya 1979), the OLS should be replaced by its enantiomorph, 
with k + -k and SI 2 SZ in formula (8). This leads to alteration of the sign of ABAs, 
whereas K A ~  remains invariant A pseudoscalar gyration parameter G for a given direction 
in the crystal is known to be characterized by 

G = q;"Jg.. bJqj (U) I (12) 

Accordingly, optical activity does not alter under the time inversion, conmy to the rotation 
angle of the indicatrix. Thus the mentioned contributions to the optical response ( I  I )  indeed 
originate from the optical activity and the indicatrix rotation. 

The optical activity within the model is attributed to unipolarity of the om. In the case 
of small 61, 82 

K a  z k q  (13) 

where q is the unipolarity coefficient: 

rl = (61 - W / ( S l  + 82). (14) 

When the crystal is not unipolar (61 = 8 2 ) .  we have the results of subsection 2.1. For a 
single-domain structure (SI = 0 or 8 2  = 0). K = +k and A0 = 0, as for a homogeneous 
crystal. 

2.3. Optical layered structure with local bounahry imperjkfion 

In the OLS displayed in figure I(c), a perfect modulation is disturbed at one crystal boundary 
by the presence of a non-compensated optical layer with the phase retardation 60 # 6. Such 
a defect in a periodic structure we will refer to as 'local' or 'point' unipolarity. From 
energy considerations, the physical realization of the model is less possible than that of 
the model presented in subsection 2.1. Indeed, a non-unipolar multidomain structure of the 
ferroelectric phases provides minimum electrostatic energy in a system. Regarding the INC 
phases, the phase solitons are known to originate and annihilate in pairs. Dijkstra (1991a) 
and Dijkstra et a1 (1992a) also supposed that the phase of the INC modulation had to be 
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zero at the sample surfaces, contrary to Stasyuk and Shvaika (1991). We illustrate here the 
effect of a local distortion of modulation wave on optical properties. 

0 S Kushnir and 0 G VIokh 

The OLS tums out to be an elliptic phase retardation plate, with 

where A is the total phase retardation in the OB. 
The optical activity can be interpreted in terms of unipolarity, but its character is not 

trivial. Even if the optical activity of 2N layers is assumed to be cancelled, the optical 
activity of the OLS does not reduce to that of the non-compensated layer. Then, both 
KJ, and A@, behave critically in the vicinity of A = k m ,  where m = ?cl, 34, etc. 
This demonstrates an unexpected feature for the optical propetties of real inhomogeneous 
systems: a dependence on the exact sample thickness concemed with the phase retardation. 
Naturally, equations (IS) and (16) are valid unless K and A0 become comparable with 
respect to unity. For small 6 and SO, KJ" is determined mainly by the divergent term in 
(15), which is proportional to kSo,  while A€&, is determined by the almost constant term in 
(16) proportional to k(8 - SO). The cases of A = 0 and its vicinity need a special analysis 
(see subsections 2.9 and 3.2). 

2.4. Non-unipolar 'shifez optical /ayered structure 

The OLS shown in figure l(d) does not have any unipolarity. The phase of the modulation 
acquires the same non-zero values at the sample surfaces, since 80 # S. This forms 
a structure 'shifted' with regard to the OLS of figure l(a). The corresponding optical 
characteristics become 

Kar = 0 (17) 

= - COS(S/Z) [ -2sin (' - 2'0) sin (2) cot (4) +sin (?)I. (18) 

The optical activity is zero as a consequence of the absence of unipolarity. The major part of 
the indicatrix rotation is associated with the second term in (IS), similarly to (7). However, 
a small term appears in ( I  8). proportional to k&(S - 80) and divergent at A = 2xm. This 
is caused by the boundary conditions, which can be formulated in terms of local distortions 
of the modulation placed symmetrically at the boundw surfaces. 

2.5, Optical layered structure with local imperfection in the sample volume 

If local distortion of the modulation occurs inside the volume of the sample (see figure l(e)), 
the optical parameters of the (unipolar) OLS are. found to be 

K A , w ~  = - cos(8/2) [sin (i) cot (%) - sin (9) cos ( '1 2 *') /sin (%)I 
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The significance of the phase retardations Al, A% and 60 is obvious from the figure. One 
can see that the optical activity and the indicatrix rotation have singularities of cot(A/2) or 
(sin(A/2))-' type at A = 2nm. The model becomes clearer when we take 60 = 0. Then 

Aeala, = -ktan (:) - sin . ('1 ")/sin (p) . 
Here the optical activity is purely a result of local distortion of the perfectly periodic 
modulation wave, despite the lack of unipolarity (see Vlokh etal 199%). Like the boundary 
imperfections, such distortion leads to enhancement of the optical activity and the indicatrix 
rotation in the vicinity of A = 2rrm. It is worth noting that the model dealing with the 
imperfections of modulation inside the sample volume, instead of the boundary ones, is 
more universal and realistic in practice. 

2.6. Effect of many local imperfections 

In this subsection we test the effect of many local imperfections of a periodic structure on the 
optical properties of the latter. Generally, the imperfections can be distributed randomly. 
We consider analytically the simplest case of a periodic distribution. Suppose the OLS 
discussed in the previous subsection to be repeated M times as depicted in figure IV). 
Simplifying the situation, this yields the OLS with 2M structural defects. Its optical activity 
and indicatrix rotation become 

Kw - cos(S/2) [sin (:)cot (G) -sin (y) cos [ '2) /sin ($)I 
AI - Az 

AeM = -- cos(S/2) s i n ( y ) s i n (  )/sin(&) 
where A again denotes the phase retardation in the entire OLS. If we compare (23), (24) 
with (19), (20). we see that singularities at A = 2nm disappear for certain non-zero m. 
On the contrary, KM and A& are enhanced M times when A is close to A = 0. In fact, 
cot(A/2M) behaves here as - 2M/A, while cot(A/2) behaves as -- 2/A. The effect of 
local imperfections thus tums out to be cumulative. Note that similar results can be derived 
for other composite OLSs. Moreover, we expect this to be true for a random imperfection 
distribution. 

2.7. Optical layered structure with different periodicities 
Let the structure be formed by joining the two OLSS of figure I(c) when they have 
different periodicities 21, and 2, (phase retardations 261 and 262, respectively), and the 
non-compensated layers be characterized by 8ol = 81, 8, = 82. We anive at the OLS 
depicted in figure IQ), for which 

= k sin (7) cos ($) COS (?) / [COS (a) cos (:) sin ($)I (25) 

x [ sin ('I - ") sin ('I 2 ") /sin (4) - sin (T)] (26) 



7024 

where A I  and A2 are the phase retardations in the constituent OLss. In the limit of 61 = 6, 
the optical activity vanishes since the structure transforms to the perfect OLS (figure ] ( a ) ) .  

The expressions (25) and (26) do not have extra peculiarities besides the ones mentioned 
above. We therefore conclude that the existence of more than one periodicity in the 
modulated material does not introduce an appreciable effect, compared with the case of 
one periodicity 21 (cf Dijkstra et al 199%). The two cases are hardly distinguishable also 
in a manner suggested by Dijkstra et al (1992a) because the phase retardation in the optical 
layers is, mainly, less significant than IT. 

2.8. Optical layered structures with modulated off-diagonal component of symmetric 
dielectric tensor 

Dijkstra (1991a) and Dijkstra et al (199%) suggested a model for an INC crystal in which 
the off-diagonal component of the real symmetric dielectric tensor is modulated along 
the z axis. This involves a spatial dependence of local position p of the optical indicatlix 

0 S Kushnir and 0 G VIokh 

tan(2p) = 2 4 ) / ( 4 )  - &. (27) 

Except in the narrow vicinity of A = 0. the modulation depth is small, and (27) reduces to 

p = 4021/(2fiAn). (28) 

Supposing a simple square waveform of the modulation, we get the model of Dijkstra 
(1991a) with small p varying from + p  to - p  in the optical layers. Besides the INC phases, 
multidomain fenoelastic ones should be the relevant cases. The Jones matrix of the layers 
takes the form 

exp(-i8/2) 72ip sin(S/t) T$ = ( ~ 2 i p  sin(6/2) exp(iS/2) 

where 6 is again the phase retardation in the layer. Calculations for the OLS with perfect 
modulation (figure ] ( a )  where p is now modulated, instead of k) give the following optical 
parameters: 

while the overall phase retardation A% = 2N6 remains practically unaffected. Expressions 
(30) and (31) reduce to those derived by Dijkstra (1991a). In other words, an ideal structure 
with modulated E!: gives rise to optical activity. 

Using (29), one can analyse other O u s .  So, we obtain 

KP -- P 
- cos(6/2) k s i n  ( y) sin (:)cot (4) -sin (?)I (34) 
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for the OMS shown in figures l(b) and ( d ) ,  respectively. 
Comparing (30x95) with the relevant formulae from sections 2.1.2.2 and 2.4. we see 

that the behaviour of indicatrix rotation within the OLS model for modulated gij coincides 
with the behaviour of optical activity within the model for modulated G:, and vice versa. 
One can easily substantiate this for arbitrary OLS. It is evident now that the phenomenon of 
indicatrix rotation can be looked at in a more general manner than has been done in section 
2.1. Namely, we are able to point out the following reasons for both the optical activity 
and indicatrix rotation in a spatially modulated medium with average inversion symmetry: 

(i) inhomogeneity of the (even perfect) structure on a semimacroscopic scale (see 
Meekes and Janner 1988, Dijkstra et a1 1992% Vlokh et a1 199%); 

(ii) polarization of the structure inducing a general unipolarity; and 
(iii) local distortions of the phase of the modulation wave, the effect of which can 

accumulate. 

2.9. Modulated structure in the absence of linear birefringence 

All the results derived above refer to essentially anisotropic (An >> G) directions in crystals 
studied in HAUP-type experiments. On the other hand, it should be of interest to clarify the 
case of a weak anisotropy (An  = 0). A relevant analysis for the optical properties of 
the crystal with modulated gyration parameter is then very simple. -One must use a more 
general form for the basic Jones matrix (2) that transforms into the Jones matrix for an 
optical rotator (see Shurcliff 1965, Azzam and Bashara 1981) when Ikl = I .  The resulting 
Jones matrix for each typical OLS is given by the product of Jones matrices of rotators. 

As a result, the overall optical rotatory power * of a system becomes additive and 
differs from zero only when non-compensated layers occur.' Especially for the OLS shown 
in figure I@),  

$A6 = *OV (36) 

where $0 denotes the optical rotatory power for a 'single-domain' crystal with the same 
thickness. The optical activity is related to unipolarity of the sample, in accordance with 
the experimental results reported by Vlokh et a1 (1985,1987) for the optical axis directions 
in INC materials. Naturally, indicatrix rotation vanishes within the model. 

Regarding the model presented in the previous subsection, it describes an isotropic 
medium when An = 0, as the phase retardations in the layers become zero (cf Dijkstra 
1991a). The model can give rise to neither optical activity nor indicatrix rotation. 

Thus, we see that the origin of the optical activiry in a modulated dielectric medium 
differs in the two altemative cases considered. 

2.10. Structure with traingularly modulated gyration component 

To simulate a sinusoidal modulation, consider a triangular shape of the modulation wave, 
instead of the square one. Let the structure be perfect with zero phase at the surface 
boundaries (cf the OLS in figure I(a)).  We assume the unit modulation cell representing 
one complete period to consist of 4No birefringent optically active layers. For the first 
half-period their eigenwave ellipticities are given successively by 

0. k', 2k'. . . . , (No - 1)k'. Nok', (No - l)k', . . . , 2k'. k' 

where k' = k/No. The phase retardation per layer is 6/(2No) with 6 the phase retardation 
in half the unit cell. Similarly for the second half-period, k' must be replaced by -k', etc. 
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Modulated 
eigenwave 
ellipticity 

- k  

Figure 2. Schematic repmenlalion of a perfect triangulsr modulation wave. 

Using the basic Jones matrix (2) of one layer and assuming the crystal to contain N unit 
cells, one can obtain in the continuous limit (No + CO) the resulting Jones matrix of the 
triangularly modulated structure (figure 2). 

The optical parameters of the latter can be written as 

K:N = O  (37) 

A@;, = -2k[ I - ~0~(6/2)]/[6  COS(^/^)]. (38) 

The peculiarities of the optical activity and the indicatrix rotation turn out to be analogous 
to those of the square-modulated stmcture studied in section 2.1. In particular, restriction 
to 6 << 1 yields A@:, -kS/4, while (7) reduces to A&, N -k6/2. Similar conclusions 
can be drawn by consideration of other typical modulated structures. As an example, we 
examine a 'shifted' structure that is an analogue of the OLS shown in figure l(d). Appropriate 
Jones calculations result in 

K6, = 0 (39) 

AO& = k[(ccos60 + sin60 - 1/60) + (cos60 - csin60)cot(A/2)] (40) 

with 

c = 1/60 + 2[l - cos(6/2)]/[~cos(6/2)] (41) 

where A and 60 have the usual meaning, and l60l c 161. Keeping the terms proportional to 
k6, k6o and k66o for small 6 and 60 in (40), one concludes that expressions (18) and (40) 
give just the same behaviour of the indicatrix rotation. The only difference in the models 
is a factor $ for triangular modulation. 

The analysis performed proves the optical properties of a modulated medium to be 
independent of the exact modulation shape (see Dijkstra 1991b). We thus may confirm 
that the same mechanisms are responsible for the optical activity and the indicatrix rotation 
when a sinusoidal modulation takes place. Notice that numerous discrepancies are available 
between our results and those reported by Stasyuk and Shvaika (1991) for a sinusoidal 
regime. So, the 'shifted' structure with modulated gyration component manifests the optical 
activity (Stasyuk and Shvaika 1991). while we find the contrary. 
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3. Discussion of the model 

3.1. Interaction of incommensurare strucfure with defects 

In this subsection we elucidate the physical reasons for distortions of the modulated INC 
structure. It is a well known fact (Cummins 1990) that the assumption conceming the 
perfect periodicity of the modulation wave has a limited field of use. In practice, the 
discrete underlying lattice and particularly extrinsic defects (impurities, vacancies, etc) can 
cause pinning of the modulation wave. We refer to numerous theoretical works (e.g. Rice et 
al 1981, Errandonea 1986, Srolovitz et al 1987) for explanation of the interaction between 
the INC structure and defects. Here we consider the effect of the point defects related 
to the phase of the modulation. Then local distortions of the phase should be concerned 
with an excess energy due to the soliton4efect interaction. Within the phenomenological 
approach used in section 2 the effect of random structural defects on the optical activity is 
just simulated by the appearance of optical layers with phase retardation unequal to that of 
the rest. 

Furthermore, we must emphasize the role of rigid or frozen-in defects with low 
mobility, as those impose maximum distortions in a regular soliton distribution, causing 
enhancement of the optical activity and indicatrix rotation. Structuredefect interaction is 
known (Srolovitz eta1 1987) to become efficient when soliton velocity and defect diffusivity 
are comparable. In the case of fixed defects, this occurs when the temperature of the 
system is kept stable for a certain time. It is noteworthy that the HAUP-type experiments 
are performed under exactly the conditions mentioned (see Dijkstra et a1 1991). As the 
optical activity in INC crystals depends on the efficiency of structure-defect interaction, we 
expect that different values of gyration can be observed for different rates of temperature 
variations in experiments (cf Mogeon er a1 1989). Probably, the data of relatively 'quick' 
experiments for optical axis directions (Vlokh et al 1985, 1987) differ for that reason from 
those of the HAUP ones. Another reason is mentioned in section 2.9. 

The recent study by Kushnir et al (1993) revealed that a notable part of the optical 
activity in the INC [N(CHs)&ZnC14 had to be attributed to defect concentration in the 
sample. The indicatrix rotation detected in the experiment decreased with annealing. An 
important fact for understanding of the problem was the conspicuous effect of x-ray radiation 
damage on the optical properties of [N(CH3)&ZnC14. X-ray defects are known (Bziouet et 
al 1987, Jamet 1988) to increase strongly the global thermal hysteresis of the modulation 
wavevector, but hardly influence the memory effect in the INC phases. They can therefore 
be referred preferably to fixed defects, that being consistent with our interpretation. 

Pinning by the point defects strengthens with decreasing temperature of the INC crystal, 
as the pinning potential overcomes the interaction between more and more distant solitons. 
Immediately close to the lock-in temperature the long-range order of the sbucture is 
destroyed by defects, and the solitons can be distributed in a random way, forming a 
chaotic state (Jensen and Bak 1984, PrelovSek and Blinc 1984). This should be reflected in 
the optical characteristics. 

Generally, we remark that a conspicuous spatial dispersion should be characteristic of 
the INC phases as analysed by Golovko and Levanyuk (1979). However, these phases are 
materialized in crystals with average inversion symmetry. Despite the latter, a gyration can 
exist (Dijkstra 1991a). Then, any disturbance of a regular structure or its polarization induce 
symmetry breaking and increase of the optical activity. It is a reasonable assumption that 
the major effects producing the optical activity occur in the bulk of the INC material rather 
than at its boundary surfaces as predicted by Dijkstra (1991a). Those effects originate from 
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defects contained in the structure. Accordingly, the sign of the optical activity seems to be 
also determined by related phenomena. 

3.2. Value and temperature variations of the optical activity and the indicarrk rotation 

Let us concentrate on the behaviour of the optical parameters derived in section 2. This 
can be realized by considering the typical magnitudes and the temperature evolution for the 
parameters involved in the model (k .  p. 6, 60. A, etc). The main peculiarity found is a 
small value of the predicted effects. Dropping the singular terms in expressions for K and 
AO, which need special examination, we see that the optical parameters are proportional 
to k8 or kSo. Otherwise, K / k  - B where k represents in fact the eigenwave ellipticity in 
uniform material without an inversion centre. 

For the INC phases, it seems unlikely that there are grounds for believing the 
characteristic length 21 to exceed in order of magnitude the INC periodicity dimension. Then 
we can estimate S N 5 x for [N(CH3)&ZnCI4, RbzZnBr4 and 
[ N ( C H ~ ) ~ ] ~ C U C ~ .  respectively, where data by Meekes and Janner (1988). Dijkstra (1991a) 
and Ortega et ai (1992) are employed. One must take into account that such large difference 
in 6 can be cancelled in the observed gyration by the corresponding difference in magnitudes 
of the linear birefringence. 

G Y IO-’) studied by several p u p s  (Kobayashi ef al 1986, Dijkstra el al 1992b. Kushnir 
er al 1993, among others) to be reliable enough. In order to make simple but very rough 
estimations, assume that the gyration parameters G; of the crystals mentioned do not differ 
significantly in magnitude, Using expressions like (3), one can deduce the relation between 
the data for different INC materials: 
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3 x IO-) and 3 x 

We consider the optical activity data for the [N(CH3)&ZnCL compound ( K  N 

K ; / K j  = Anj/Ani. (42) 

We should thus predict very small values K = 2 x in 
[N(CH3)412CUCI4, which are outside the capacity of the experimenter. The work by Ortega 
et al (1992) proves that. Similar estimations for RbzZnCL yield K = 5 x while 
Kobayashi eta1 (1988) obtained the (average) value K N 5 x This can be understood 
only with the view that the gyration in Rb2ZnCL is an order of magnitude larger than in 
[N(CHs)&ZnC14. On the other hand, defects and unipolarity in a crystal can enhance the 
optical activity, as observed by Kushnir et al (1993). 

Other conditions occur in multidomain ferroelectric phases, where, for example, I N 

IO pm.  At sufficiently large linear birefringence we may expect an unusual behaviour of the 
optical activity and the indicauix rotation (see Vlokh er al 1992a) in such inhomogeneous 
phases. 

We now tum to temperature evolution of the parameters involved in the Jones model of 
the INC crystal. Both optical activity and indicatrix rotation depend on the modulation depth 
for eij components, i.e. on k and p. The modulation depth has to be related to the order 
parameter amplitude. This is why the optical activity near the normal-Mc phase transition 
temperature T can be interpreted (see Saito and Kobayashi 1991, Fousek 1991) according 
to a power law 

in Rb2ZnBr4 and K N 2 x 

G N (7; - T ) f i .  (43) 

However, application of formula (43) is rather limited. A few different cases for the optical 
activity behaviour near 7; are found experimentally (see Kobayashi et al 1986, Meekes and 
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Janner 1988, Dijkstra et a l  1992b, Kushnir et al 1993). The optical activity can follow 
(43), or become zero already below Ti, or exhibit a residual effect in the normal phase. 
This is explained by the influence of structural defects on the optical activity as shown in 
this paper. 

Pinning by defects produces more pronounced effects when temperature lowers towards 
Tc, the lock-in-INC transition point. The structure can acquire some unipolarity (Sanctuary 
et ol 1985), which depends on the prehistoly of a sample and the presence of external fields. 
Furthermore, the soliton density n, tends to zero on approaching T,, and the modulation 
period 21 determining the size of the optical effects is related to n6 as Z - n;'. All these 
factors should cause an increase of the optical activity. Note that similar phenomena are, 
to a certain extent, characteristic for temperatures below T,. 

Finally, we examine the behaviour of the model near a specific temperature TO, where 
the linear birefringence passes through zero. The latter happens in [N(CH3)&ZnC14. Close 
to To, the modulated parameters increase strongly: k -+ f l  and p -+ fn/4. We assume 
that all the phase retardations depend linearly on temperature (A, 6, 60 - T - TO) in the 
vicinity of TO, while k ,  p - (T - TO)-i according to (3) and (28). Checking the perfect 
modulated structure gives Kf' - p6 N const, which results in a zero gyration parameter 
observed near TO (see data reported by Kobayashi et al (1 986) and Dijkstra et a l  (1992a, b)). 
The imperfect structure considered in section 2.5 manifests another behaviour: 

when we account for only the first term in (19). Relation An - y(T - TO) causes gyration 
G to be non-zero in the vicinity of To: 

G = 2KriAn = Zayii. (45) 

The higher the defect concentration, the larger is the coefficient a, as shown in section 2.6. 
Relevant experimental data are reported by Kushnir et ai (1993). 

On the other hand, one can directly notice that the eigenwave ellipticity K is very 
sensitive near TO: it becomes zero if the gyration is zero, and tends to & I  if the latter 
remains non-zero at TO owing to small unipolarity, etc. We observe again a link between 
the optical properties and a specific state of the sample, as is often the m e  for INC crystals. 
Unfortunately, it is difficult to clarify experimentally the exact temperature dependence of K 
in a narrow vicinity of TO because of the hard effects of the optical equipment imperfections 
(Moxon and Renshaw 1990). 

4. Concluding remarks 

In this paper a phenomenological model is presented that describes visually the crystal 
optics of a spatially modulated dielectric medium with average inversion symmetry. Several 
typical inhomogeneous structures are analysed with Jones calculus. The model explains the 
presence of optical activity in the INC material, as well as the effect of unipolarity and 
structural defects on the optical properties. The model is thus expected to contain the 
essential physical ingredients of the problem, although the link with the crystal symmetry 
is disregarded, which has been the main concern of the works by Meekes and Janner 
(1988) and Dijkstra et a1 (1992a). A further effect is shown to be possible: an indicatrix 
rotation, which can be detected in HAUP-type experiments. Within the present approach, 
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the linear birefringence related to the phase retardation of a system is affected only in the 
approximation quadratic in modulated parameters k and p. The relevant phemomena turn 
out to be weak, except in the narrow vicinity of a specific temperature TO (see Dijkstra 
1991a). It implies that other efficient mechanisms are responsible for the behaviour of the 
linear birefringence in the INC crystal (Fousek 1991). 

In our view, the role of the boundary surfaces in crystal optics of modulated systems 
(Dijkstra 1991a) is exaggerated. The corresponding sensitivity of the optical parameters 
to the boundary conditions represents one of the remaining problems. Immediately, that 
points to a small value of the effects predicted. On the other hand, such a singularity may 
be a consequence of the oversimplified analytical description. In this paper we have shown 
schematically how the importance of the bulk crystal can increase within the model. 

The soliton distribution in real INC systems can be much more complicated in camparison 
with that supposed by Dijkstra (1991a). This would arise from the influence of random 
defects on the modulation, the coexistence of more than one periodicity, etc. A good 
illustration is given by Pan and Unruh (1990) for a discommensuration pattern in the lock- 
in phase of KzZnC14. As a result, we should analyse a complex superposition of the 
modulated structures discussed in this paper. Of course, such a model has to be cumbersome, 
but includes some efficient integrating factors. We think that the latter would remove the 
critical behaviour of the model with respect to accidental conditions. 

Finally, we stress that the model shows the smallness of the gyration effect in !Nc 
materials. Indeed, an approximation of the average shucture gives zero optical activity 
in a centrosymmetric INC crystal, which is unfoundedly presumed to be uniform. In a 
more accurate approximation, considering the spatial inhomogeneity of the structure leads 
to optical activity. However, the spatial scale 21 of the inhomogeneity is small. Within the 
model presented in the paper, it is difficult to explain why the gyration is of an order of 
magnitude comparable with that of cy-quartz. 
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Appendix 

Let us derive the optical parameters of a composite phase retardation plate whose Jones 
matrix has the following form in the coordinate system related to the principal axes of the 
constituent optical layers: 

exp(-iA/2) k(a + ib) 
Ts= ( k(-a +ib) exp(iA/2) 

Ts is unimodular as k << 1 and Ts.22 = T~,J, ,  Ts.2, = -Ts,,2. The Jones mahices discussed 
in the paper can be reduced to (Al), including T*. Suppose for simplicity that other optical 
components (polarizer, analyser, etc) are perfect, contrary to the works of Kobayashi et d 



Crystal optics in real modulated phases 7031 

(1986) and Vlokh et al (1992b). Then the Jones vector of the light transmitted through a 
crystal is defined as follows: 

Eso = TsEsi (-42) 

with ESI representing the Jones vector of a linearly polarized light wave incident on the 
crystal: 

ESI = (: ) . 
In (A3) 0 is the small incident polarization azimuth. The azimuth x and the ellipticity E of 
the output light associated with ESO are given by 

x = Re(&o.,/Eso,x) E = Im(Eso.,/EsoA. (A4) 

The value 00 of the symmetry azimuth (XO = 00) and the characteristic ellipticity €0 
defined as the output ellipticity at 0 = 00 (Vlokh er a1 1992b) become 

00 = K cot(A/2) + A6 (A5) 

€0 = 2K (A6) 

respectively, where 

A0 = -kb/[2sin(A/2)] (A7) 

K = -ka/[2sin(A/2)]. (AS) 

Note that 00 and €0 are the quantities measured experimentally within the polarimetric 
method of Vlokh et a1 (1992b). 

Performing the analogous calculations for the Jones matrix T+ of a homogeneous 
birefringent optically active clystal yields 

00 = k cot(6/2) (A% 

€0 = 2k. (-410) 

We emphasize that the Jones matrices T+ and Ts are defined in the same coordinate system. 
Comparing (AS), (A6) with (A9). (AlO), one can see that K and A0 imply the eigenwave 

ellipticity and the indicatrix rotation in an inhomogeneous 0s described by (AI). This 
conclusion can also be arrived at by examining the azimuthal angles and ellipticities of 
the eigenmodes of TS in approximation linear in k. Thus, the optical activity and the 
indicatrix rotation are related in a simple way to the real and imaginary parts of the off- 
diagonal elements of Ts. Moreover, K and A0 can be immediately detected in polarimetric 
experiments (see Vlokh et al 1992a, Kushnir et a! 1993). These values contribute also to 
the light intensity function employed in HAUP (Kobayashi et ai 1986). 
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